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The concern here is with the numerical methods for the well-known singular parabolic 

equations in unsteady boundary-layer flows behind a moving shock and the development of 

boundary-layers on a semi-infinite plate impulsively set into motion. These equations can be 

derived with a semisimilar transformation by which the domains of solution are mapped on to 

(0. 1 I. It is shown that this class of singular parabolic equations can be elegantly and 

accurately solved by using the successive-overrelaxation method normally applied to elliptic 

equations. No artificial viscosity or numerical attenuation is required. Details of the 

computational procedures are given. Salient natures of the numerical method are analyzed. 

Results of the analysis show that as far as the stability of computations is concerned, the sign 

of the diffusivity is not important; however, to obtain convergent solution, the “initial” 

conditions have to be specified consistently. 

1, INTRODUCTION 

Well-posed parabolic equations, encountered mostly in the problems involving 
diffusion process, have positive diffusivity. Their solutions are uniquely determined 
by the given boundary conditions and an initial condition [ 11. Numerically, this class 
of equations is generally solved by marching in the direction of the timelike 
(parabolic) variable. Parabolic equations with negative diffusivity (in the 
mathematical sense) are classified as ill-posed problems. Solutions for this class of 
parabolic equations are discussed in 121. 

There is another class of “parabolic” equations, which result from the transfor- 
mation of variables, having characteristics different from those equations mentioned 
above. Classical examples are equations from semisimilar formulations of the 
problems in unsteady boundary layer on a semi-infinite plate impulsively set into 
motion (Stewartson’s problem) [ 3 1; the Stewartson’s problem with generalized 
starting condition by Cheng 141; and the unsteady compressible boundary layer 
behind a moving shock on a flat plate by Lam and Crocco [5]. 

Two features distinguish this class of “parabolic” equations from the classical well- 
posed parabolic equations and the ill-posed parabolic equations: (1) In part of the 
domain of solution, the signs of the diffusivity (in the mathematical sense) are mixed 
and (2) two “initial” conditions are specified by the two ends of the timelike 
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independent variable. Parabolic equations of this kind are called singular parabolic 
equations [5]. (These equations are different from the elliptic-parabolic equations 
studied by Franklin and Rodemich [6] in the sense that in the latter the “initial” 
conditions are specified by different portion of the two “initial” stations.) According 
to Ref. [S], two “initial” conditions are admissible because of the existence of the 
domain where the signs of the diffusivity are mixed. For the convenience of 
discussion, we shall refer to this part of the domain of solution the mixed region. 

Obtaining solutions in the mixed region has been shown to be difficult. Numerical 
methods for solving the singular parabolic equations that arise from the Stewartson’s 
problem have been presented only recently by Dennis [7] and Williams and 
Rhyne [8]. Both methods started from one initial station where the diffusivity is 
positive using the classical marching technique. In the mixed region they applied one- 
sided backward or forward differencing, depending, respectively, on the diffusivity 
being positive or negative, for the derivatives with respect to the timelike independent 
variable. When the forward differencing was used, all the dependent variables at the 
solution station and stations ahead were not known until the other “initial” station 
was reached, where another “initial” condition was specified. These unknowns were 
initially guessed. Iterations in both timelike and spatial directions were performed 
until the convergence criterion was met. Dennis [ 71 applied one-sided two-point 
differencing. Artificial damping was required to make the iteration converge. The 
effect of this added artificial damping term was shown to make the parabolic 
equations elliptic. Williams and Rhyne (81 applied one-sided three-point differencing. 
Because of the nonlinear nature of the problem, the signs of the diffusivity in the 
mixed region were not a priori known, and had to be determined at each grid point in 
every iteration so that the direction of the differencing could be adjusted accordingly. 
Nevertheless, results obtained by both methods showed good agreement with the 
computation of Hall [9] where the semisimilar transformation was not applied. A 
good account of this problem has now been given by Telionis [lo]. 

Piquet [ 111 presented a numerical method applicable to the compressible 
Stewartson’s problem as well as the unsteady compressible boundary-layer flows 
behind a moving shock. Following the approach of Lam and Crocco 151, he first 
wrote the boundary-layer equations in terms of Crocco’s variable and then applied a 
semisimilar transformation, which yielded a set of singular parabolic equations. After 
the solutions were obtained at both ends of the mixed region, the solution inside the 
mixed region was obtained using a time-dependent scheme by adding to the equations 
a term of first derivative with respect to an artificial time. The derivatives with 
respect to the original timelike independent variable were replaced by central 
differencing. Artificial “attenuation” (which can be shown to correspond to a 
numerical viscosity) was required to stabilize the computation. 

Numerical solution for the singular parabolic equation from the unsteady 
boundary-layer flow in the shock tube had also been attempted earlier by Ban and 
Kuerti [ 121 and Walker and Dennis [ 131. 

It has been shown [ 141 that the unsteady compressible boundary-layer flow behind 
a moving shock and the compressible Stewartson’s problem can be formulated, 
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without using Crocco’s transformation, with a semisimilar transformation by which 
the domains of solution are mapped on to [0, I]. This mapping is particularly useful 
for the numerical computation. Applicabilities of the transformation are not limited 
to ideal gas or particular temperature-dependent transport coefficients. The resulting 
equations are singular parabolic in nature. The two “initial” conditions are by them- 
selves the solutions of the governing equations of motion at the respective “initial” 
stations. 

In this paper it will be shown that this class of singular parabolic equations can be 
elegantly and accurately solved by the successive overrelaxation method normally 
applied to the numerical solutions of elliptical partial differential equations ] 15 ]. 
Second-order central differencings are applied to both the timelike derivatives and the 
spatial derivatives. The same differencing scheme and relaxation procedure are 
applied in the entire domain of solution. There is no need to divide the domain of 
solution into regions. No artificial damping or attenuation is required. 

By an exploratory analysis, some salient natures of the relaxation method applied 
to this class of singular parabolic equations are revealed. The convergence of the 
solution of the finite difference equation to that of the differential equation is shown. 
The relaxation method presented for solving the singular parabolic equations of this 
type is shown to correspond to a time-dependent scheme for a boundary-value 
problem. As far as the stability is concerned, the sign of the diffusivity in the original 
equation does not play an important role. However, to obtain the convergent solution, 
it is crucial that the two initial conditions are specified consistently. 

The numerical procedures are given in great detail in Section 3. Only the solution 
of the incompressible Stewartson’s problem will be presented here for the purpose of 
comparison. The exploratory analysis on the salient natures of the numerical 
procedure is given in Section 4. For the sake of completeness, a singular parabolic 
equation arising from the Stewartson’s problem is recapitulated in Section 2. 

2. A SINGULAR PARABOLIC EQUATION 

IN UNSTEADY BOUNDARY-LAYER FLOWS 

A semi-infinite plate immersed in a quiescent fluid of intinite extent is impulsively 
set into motion at time t = 0 with constant velocity U,. In a Cartesian coordinate 
system, with the origin fixed at the leading edge of the plate (Fig. l), the equations 
governing the unsteady incompressible boundary-layer flow on the flat plate are 

au au au a2u 
~+u~+vay=u&yT’ 

au au -+-=o, ax ay 

(1) 

(2) 

where x and y are the axes parallel and normal, respectively, to the plate; u and v are 
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FIG. 1. Coordinate systems for the unsteady boundary-layer flow on a semi-infinite plate 
impulsively set into motion. 

velocity components of fluid in the x and y directions, respectively; and v is the 
kinematic viscosity. 

Mathematically, the boundary conditions and the initial condition are 

for x 2 0 and t L 0, 

u=u=o at y=O, U’ u, as y-03; (3) 

for t L 0 and y > 0, 

u = u, at x=0; (4) 

for x 2 0 and y > 0, 

u = u, at t=O. (5) 

However, based on physical reasoning [3], the “boundary” condition (4) is 
replaced by the condition that the flow field at x/U,t = 0 be given by the steady-state 
Blasius solution. The initial condition (5) is replaced by the condition that as 
x/U, t -+ co, the flow field be represented by the Rayleigh solution for the viscous 
flow on an impulsively started infinite plate. The semisimilar variable x/U,t is 
originally given by Stewartson [3]. 

An alternative semisimilar transformation for this problem has been given by 
Williams and Rhyne [8] and extended to compressible flow by Wang [ 141. The 
independent variables (x, y, t) are transformed to (& q) by 

(= 1 -e-w, rj = y/[vx(l - e-“~‘X)/Ue]“2, (6) 

and the nondimensional stream functionf(C;, a) is given by 

W Y, t) = [U, vx(l - e-“d’X)] “*f(t, r]), (7) 

where I+V(X, y, t) is the stream function related to u and u, by 

u(x, y, t) = 2, 
aY 

V(X,Y,f)=--. (8) 
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In terms of the stream function v/, the continuity equations (2) is automatically 
satisfied and the momentum equation (1) can be written as 

A ~=ii”ii I A @ 

” ag at,/* ’ it+/’ 

where 

A,=<(1 -C)[l +ln(l -T)U], 

and 

The boundary conditions (3) are now given by 

f=Q=O at v=O; u-+ 1 as y~+co. 

(9) 

(10) 

(11) 

(12) 

(13) 

As discussed earlier, at x = 0, ii is given by the steady-state Blasius solution; i.e., 
the solution of 

(14) 

subject to the boundary conditions given by Eq. (13). At x = 0, c = 1. Equation (14) 
is obtained from Eq. (9) by setting < = 1. 

At t = 0, U is given by the Rayleigh solution; i.e., the solution of 

2 

$+L+o 
2 dv (15) 

subject to the boundary conditions given by Eq. (13). At r = 0, < = 0. Equations (15) 
is obtained from Eq. (9) by setting r = 0. 

Equation (9) is to be solved in the domain 0 I r] < co, 0 I r 5 1, and is formally 
parabolic with r serving as the timelike independent variable. There are two “initial” 
conditions to be satisfied: one at c = 0 and the other at r = 1. In 1 2 c > 1 - e- ‘, the 
sign of the diffusivity A, can be either positive or negative and cannot be predeter- 
minated. Parabolic equations of this type are called singular parabolic equations [ 5 I. 
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3. NUMERICAL METHOD AND RESULTS 

The nonlinear singular parabolic equation (9) is to be solved subject to the 
boundary conditions given by Eq. (13) and the two “initial” conditions given, respec- 
tively, by the solution of Eqs. (14) and (15). 

Using the second-order central difference for both derivatives with respect to c and 
q, Eq. (9) can be written as 

ui,j = [(ci,j+ 1 + fi,j-l)/AV2 + A Iti j)t"i,j+ I - ‘i,,i- II/C2 'rl) 

-A,,(i)(Pi+l,j-Pi-,,j>l(2dr)llB(i,j), (16) 

where i and j are the grid index in the r and r] directions, respectively; ri = (i - 1) d& 
vj = (j - 1) dy; and 

B(i, j) = 2/Ar2 + A,,(i)(fi+ i,j - ci- ,.j)/(2 A<), (17) 

Al),(i) = ti(l - ti)> (18) 

Adi) = ti( l - ti) 141 - Cl? (19) 

A,(i,j) = :[ti + (1 - ti) Ml - <iI] fCi9.8 + t1 -Cl Vj/2 

+ C( 1 - <i) ln( 1 - <i) [f(i + 1, j) - f(i - 1, A]/(2 A<), (20) 

./Ii, j) = p a(<i 3 rl) dvl- (21) 

Although solution for Eq. (15) can be obtained analytically in terms of the 
complimentary error function, it is obtained numerically in this study using the 
second-order central differencing. The solution is used as the initial guess for the 
numerical solution of Eq. (14), which is also solved by the second-order central 
differencing with convergence criterion E = lO-‘j. The convergence criterion is defined 
by Eq. (25). 

With the “initial” conditions known, the difference equation (16) is solved by the 
successive-overrelaxation method [ 151. It should be noticed that this method is 
considered pertinent to the numerical solution of the elliptic equations. 

The initial guess is obtained by linear interpolation from the two “initial” con- 
ditions. 

The iteration proceeds in the direction of increasing j. For each j the procedure 
proceeds in the direction of increasing i. In the iteration the old values of the 
dependent variables are replaced immediately by the new values computed except 
f(i, j), which is recomputed after a relaxation cycle for U is completed. 

Let IE denote the cycle of relaxation; the procedure for solving Eq. (16) is 
performed by 

U~,)‘=(l-p)~~,j+p[(~~,j+,+u~,fl,)/Arl*+A,(i,j) 

x (C,j+ L - QF,5’,)/(2 Av) - A,,(i)(til+ 1.j - Cl!T/,j)/(2 AQ]/B”+ ‘(i, j), (22) 
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where 

B”+‘(i,j)= 2/dq* +FI~~(~)(zY~+,,~- ti~T/,j)/(2Ac3 (23) 

and p, the relaxation factor, is a constant. In A r (i, j), the f(i, j) is computed by 

using the trapezoid rule. 
The convergence criterion is applied to the ratio defined by 

Eij = I(Cy,)' - ti~,j)/ZT~,jI. (25) 

The computation is considered to be converged when sup(.sij) is less than a preset 
small value E. In this study, the test points are set at i = 2,4,6 ,..., j = 2,7, I2... . 

Earlier, for the purpose of numerical computations of the inviscid flows in 
turbomachinery with mixed subsonic and supersonic flow regions, an alternative 
formulation had been made [16] based on the work of Wu [ 171. The governing 
equations were made formally elliptic by adding to both sides of the equations terms 
of second derivatives. Inspired by this formulation, we also make a numerical 
experiment by adding to both sides of Eq. (9) a term a a2C/8r2, where a is a constant. 
The resulting difference equation is 

where 

EY,) ’ = (1 - p) u;,j + pl(zT;,j+, + ii;,;! ,)/‘4$ 

+ A Xi, j)(“y, j+ 1 - ziy,;! ,)/(2 Av) + 2aziy,j/At2 

-A,,(i)(uy+ I,j - C;i;,,i)/(2 &)]/p+ ‘(4 j), (26) 

B”“(i,j) = B”+‘(i, j) + 2a/A~*. 

Equation (26) is reduced to Eq. (22) if a is set to zero. 

(27) 

TABLE I 

Rate of Convergence 

& 

IO-’ 
1o-5 

p= 1.4 

n = 294 
n = 605 

a=0 a=1 

p= 1.6 p = 1.8” p = 4.0 p=4.4 __ p = 4.Q 

221 157 243 191 159 
383 194 424 265 197 

’ Iteration fails to converge for p = 2.0. 
b Iteration fails to converge for p = 4.8. 
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0.38 I I I I 1 
0 50 100 150 200 250 

n 
FIG. 2. Converging sequence: - and ---, a = 0; -.- and -. .-, a = 1.0. 

The results presented in this paper are based on the computation of A( = 0.05, 
A? = 0.0625, 21 grid points in the < direction and 192 grid points in the q direction. 

Cycles of iteration required for the solution to converge to different levels of E are 
shown in Table I. The typical sequence of convergence, represented by the solution at 
i = 15, j= 17 (r= 0.7, v = 1.0) is shown in Fig. 2. As expected the rate of 
convergence depends on p; however, the final solution does not. 

From this result it is seen that for the present problem the procedure of adding the 
a term, with a = 1, to both sides of the equation to make the equation formally ellip- 
tical does not yield computational advantage. As expected, both procedures, a = 0 
and a = 1, converge to the same result. 

Typical velocity profiles U(<, q) are shown in Fig. 3. The profiles for r = 0 and 1 
correspond, respectively, to those of the Raleigh solution and the Blasius solution. 

Let C, be the skin friction coefficient defined by the shear stress on the plate 
divided by pU:, then 

(28) 

where R, = U,x/v. Comparisons of the values of R:“Cf obtained from the present 
calculation with those calculated by Dennis [ 71 and Hall [ 91 are shown in Fig. 4 and 
in Table II. The tabulated results presented by Hall [9] and Dennis [7] are at the 
discrete points of r = Vet/x. These points do not coincide with the present 
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5.0- 

4.0 c 

FIG. 3. Velocity profiles for an incompressible boundary-layer on a semi-infinite plate impulsively 
set into motion. 

computational grid points. Third-degree (four points) Lagrangian interpolation is 
applied to the present result to obtain the solution at these points. These solutions are 
identified in the Table. The present results agree with those of [7] and 191 to at least 
the third effective digit. 

Dennis [ 71 assumed r = 1 as an “initial” station with the velocity profile given by 
the Rayleigh solution. He integrated the equation of motion from t = 1 toward the 
leading edge (5 b 1) with the method described earlier in Section 1 and found that the 
departure of his calculated skin friction from that given by the Rayleigh solution was 
hardly noticeable until r > 1.4. It is shown in Table II that the present calculation 
agrees with his finding. 

In the domain 0 < 7 < 1 the present result also agrees with the Rayleigh solution at 
least to the third digit. The difference on the fourth digit could be incurred by the 
truncation error. Among the sources of truncation errors is the numerical calculation 
of Eq. (28). The leading term of the truncation error is $[a3~/aq3]Q=o dq*/\/. With 



3. 

2. 

n 
27 

u’ 

1. 

0. 

SINGULAR PARABOLIC EQUATIONS 473 

I I I I I I I I I 
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t 

FIG. 4. Skin friction coefficient C, from Rayleigh solution, ---; present result, +; Ref. [7], X; 
Ref. [9], 0. 
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TABLE II 

Comparison of Results 

5 = L$tfx 

0.05 0.05 129 
0.10 0.10536 
0.15 0.16252 
0.20 0.223 14 
0.25 0.28768 
0.30 0.35667 
0.35 0.43078 
0.40 0.5 1083 
0.45 0.59784 
0.50 0.693 15 
0.55 0.7985 1 
0.60 0.91629 
0.63212 1.0 
0.65 1.04982 
0.66713 1.10 
0.6988 1 1.20 
0.70 1.20398 
0.72747 1.30 
0.75 1.38629 
0.75340 1.40 
0.77687 1.50 
0.79810 1.60 
0.80 1.60944 
0.85 1.89712 
0.86466 2.0 
0.90 2.30259 
0.95 2.99573 
0.9502 I 3.0 
0.98 168 4.0 
0.99752 6.0 
0.99966 8.0 
1.0 co 

R “*C x , 

Present 

2.4932 
1.7396 
1.4006 
1.1953 
1.0527 
0.9454 1 
0.86024 
0.79000 
0.73023 
0.67815 
0.63183 
0.58987 
0.56467” 
0.55112 
0.53840” 
0.5 1546’ 
0.51461 
0.495 14a 
0.47947 
0.477 14R 
0.46116” 
0.44688’ 
0.4456 1 
0.41231 
0.40277’ 
0.37989 
0.34702 
0.34691” 
0.33431O 
0.33211” 
0.33207” 
0.33207 

Rayleigh 

2.4912 
1.7382 
1.3995 
1.1944 
1.05 19 
0.94470 

0.85960 
0.78938 
0.72968 
0.67766 
0.63137 
0.58940 
0.56419 
0.55064 
0.53793 
0.5 1503 
0.51418 
0.49483 
0.47918 
0.47683 
0.46066 
0.44603 
0.44472 
0.40962 
0.39894 
0.37181 
0.32597 
0.32574 
0.28210 
0.23033 
0.19947 

Dennis [ 71 Hall 19) 

0.56420 0.5642 

0.53794 
0.51504 

0.49485 

0.4769 1 
0.46090 
0.44657 

0.4610 

0.4026 0.4025 

0.3495 0.3493 
0.3347 0.3345 
0.3321 0.3320 
0.3321 0.3320 

’ Interpolated value. 

7 = 0.05129, Aq = 0.0625, and ii given by the Rayleigh solution, this error is 
-0.0065. The difference of the present calculation from the Rayleigh solution is 
0.0020. In this case, the difference in fourth digit is expected. 

Agreement of the present calculated (&/a~),=, with that of [ 8 ] is shown in Fig. 5. 
The two solutions are indistinguishable. 

It should be noticed that in the domain 0 < r < 1, A, of Eq. (9) is positive. Instead 
of using a one-sided backward differencing as presented in [7] and [S] in accordance 
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with the concept of numerical method for the well-posed parabolic equations, the 
present method applies the second-order central difference for &I/at. 

4. ANALYSIS OF THE NUMERICAL METHOD 

Consider the linear partial differential equation 

c !Y+c +!Y+c !f! 
’ ax 2 ay2 ‘a$ (29) 

where c, , c2, and c3 can be functions of x and y. Using the numerical method 
presented in the previous section, with a = 0, the corresponding difference equation is 

(30) 

where c, , c2, and c3 are evaluated at (xi, yi). 
Equation (30) corresponds to the finite difference equation for solving the initial 

boundary-value problem 

&=a’g+c at* ay2 
cc, (jet 2 

‘ay 2 ’ ax’ 

where d = (2 + c2 dy2) At*/(p dy2), with the differencing scheme 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

The solution of Eq. (29) is given by the steady-state solution of Eq. (31). 
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Notice that Eq. (31) is first order in x. If two boundary conditions for .Y are 
specified, it is expected that the solution will exist only if they are consistent. In the 
case of Eq. (9), the specified conditions for U at r = 0 and 1 are consistent in the 
sense that they are by themselves the solution of Eq. (9) at the respective location. 

To consider the numerical stability (in the von Neumann sense), assume that the 
solution at t* = n At* is given by 

n i(ibA.x t jydpl #y,i=ge , (37) 

where g” = g (n At*) is complex; ,L? and y are wave numbers; and i= &r. 
Substitution of Eq. (37) into Eq. (30) gives 

g 
ntl a + bz’ -.---=I------------,, 
g” c + di (38) 

where 

a=211-cos(y/4y)]+c,dy2, (39) 

c,dy2 . 
b = -cj Ay sin(y dy) + dx sm@ AX), (40) 

c= 2+c2Ay2 - (1 -q) cos(yAy)-gcos~Ax), 

d=(,” ) ~3 AY c, AY* 
- 

2 
sin@ Ay) + 2dx sin@ Ax). 

(41) 

(42) 

The amplification factor is given by 

__ = (c-u)*+ (d-b)2 
c*+d* ’ (43) 

. (43) can be written as For small p, Eq 

g 
n+ I 

g” 

where 

* = (2 + c, Ay2)2 - 2p(2 + c* Ay2)(a + c*> + O(p2) 

(2 + c, Ay2)* - 2p(2 + c2 Ay*) c* + O(p*) ’ 
(44) 

c*= (1 -~jcos(,Ay)+~cos(p~x). (45) 

If c, is positive, so is CI. Since p can be arbitrarily small, it is seen from Eq. (44) 
that a sufficient (but not necessary) condition for 1 g”’ l/g” I< 1 is c2 > 0. Implied in 
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this result is that as far as the stability is concerned the sign of c, is not important if 
p is chosen small. 

Equation (29), with c, = -fi, c2 = -(l - &), and c3 = 2.5, is solved in the 
domain x= [O, l] and Y = 10, co>. The boundary conditions are 
4(x, 0) = 4(x, co) = 0 and the “initial” conditions are 

#WY Y) = A, ew-c, y/2) SinW, Y> (46) 

and 

#CL Y> = A2 ev-c, 142) sinh(y, Y), 
where y, = yz = (c:/4 - 1)‘12, A, = 1.0, and 

(47) 

A, = A, exp(-1). (48) 

The agreement of the numerical result with the exact solution is shown in Table III. 
In this calculation, dx = 0.05, dy = 0.15, p = 0.8, and the convergence criterion 
& = 10-5. 

The leading term of the truncation error for the finite difference approximation of 
c?~$/c?~~ is - & a4#/ay4 Ay2. At x = 0.5, y = 0.75, using the exact solution for $, this 
truncation error is +0.0015. As shown in Table III, the difference between the 
numerical solution and the exact solution at this point is +0.0009. 

The two initial conditions specified in this calculation are consistent in the 
following sense. Both Eqs. (46) and (47) satisfy the differential equation (3 1). 
Because of the existence of Eq. (48), they are not independent equations. If one is 
considered as the initial condition, the other is the solution. Attempt to obtain a 
convergent solution when A, is not related to A, by Eq. (48), as expected, was not 
successful. 
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